
Final Project (CIS-544)
Javier Rojas. jrojas@stu.edu
Due 12/12/16 by 6 PM EST

Introduction and Motivation

• As with any school or higher education institution, one of their key goals is to continously find various
alternatives that may increase their student retention and graduation rate.

• With the current advances in information technology, research fields incompassing Business Intelligence
(BI) and Data Mining (DM) have opened windows of opportunities to effectively model student
performance, which can lead to early detection of students who may be prone to falter in their academic
discipline.

• The tools associated with these fields can consequently direct us to the discovery of key features or
characteristics that may hinder students from achieving optimal academic performance.

• As such, all the valuable information acquired from utilizing such tools can assist educators in determining
appropriate methods which can aid falty students in surpassing their difficulties and continue smoothly
toward the completion of their intended academic path.

Data Description

• In keeping with the same mindset explained above, for this project, I focused on conducting a similar
investigative approach exceuted by Cortez and Silva in their work titled “Using Data Mining to Predict
Secondary School Student Performance”.

• In such work, they studied student data collected during the 2005-2006 school year from two public
Portuguese secondary schools with regards to the students’ performances in two distinct courses,
Mathematics (MAT) and Portuguese (POR).

• The information contained within this dataset provided insight into each student’s corresponding
grades, demographic, social and school related features. Specifically, below are the attributes contained
within both the student-mat.csv (Math course) and student-por.csv (Portuguese language course)
datasets:

1) school - student’s school (binary: ‘GP’ - Gabriel Pereira or ‘MS’ - Mousinho da Silveira)
2) sex - student’s sex (binary: ‘F’ - female or ‘M’ - male)
3) age - student’s age (numeric: from 15 to 22)
4) address - student’s home address type (binary: ‘U’ - urban or ‘R’ - rural)
5) famsize - family size (binary: ‘LE3’ - less or equal to 3 or ‘GT3’ - greater than 3)
6) Pstatus - parent’s cohabitation status (binary: ‘T’ - living together or ‘A’ - apart)
7) Medu - mother’s education (numeric: 0 - none, 1 - primary education (4th grade), 2 - 5th to 9th grade,

3 - secondary education or 4 - higher education.)
8) Fedu - father’s education (numeric: 0 - none, 1 - primary education (4th grade), 2 - 5th to 9th grade, 3

- secondary education or 4 - higher education.)
9) Mjob - mother’s job (nominal: teacher, health care related, civil services (e.g. administrative or police),

at home or other.)
10) Fjob - father’s job (nominal: teacher, health care related, civil services (e.g. administrative or police),

at home or other.)
11) reason - reason to choose this school (nominal: close to ‘home’, school ‘reputation’, ‘course’ preference

or ‘other’)

1

mailto:jrojas@stu.edu

12) guardian - student’s guardian (nominal: ‘mother’, ‘father’ or ‘other’)
13) traveltime - home to school travel time (numeric: 1 - <15 min., 2 - 15 to 30 min., 3 - 30 min. to 1 hour,

or 4 - >1 hour)
14) studytime - weekly study time (numeric: 1 - <2 hours, 2 - 2 to 5 hours, 3 - 5 to 10 hours, or 4 - >10

hours)
15) failures - number of past class failures (numeric: n if 1<=n<3, else 4)
16) schoolsup - extra educational support (binary: yes or no)
17) famsup - family educational support (binary: yes or no)
18) paid - extra paid classes within the course subject (Math or Portuguese) (binary: yes or no)
19) activities - extra-curricular activities (binary: yes or no)
20) nursery - attended nursery school (binary: yes or no)
21) higher - wants to take higher education (binary: yes or no)
22) internet - Internet access at home (binary: yes or no)
23) romantic - with a romantic relationship (binary: yes or no)
24) famrel - quality of family relationships (numeric: from 1 - very bad to 5 - excellent)
25) freetime - free time after school (numeric: from 1 - very low to 5 - very high)
26) goout - going out with friends (numeric: from 1 - very low to 5 - very high)
27) Dalc - workday alcohol consumption (numeric: from 1 - very low to 5 - very high)
28) Walc - weekend alcohol consumption (numeric: from 1 - very low to 5 - very high)
29) health - current health status (numeric: from 1 - very bad to 5 - very good)
30) absences - number of school absences (numeric: from 0 to 93)
31) G1 - first period grade (numeric: from 0 to 20)
32) G2 - second period grade (numeric: from 0 to 20)
33) G3 - final grade (numeric: from 0 to 20, output target)

• For the purposes of this project, I focused solely on the Mathematics (MAT) dataset. In regards to this
dataset, I modeled the Math course under three DM goals:

i) binary classification (pass/fail)
ii) classification with five levels (from I very good or excellent to V - insufficient); and
iii) regression, with a numeric output that ranges between zero (0%) and twenty (100%).

• For each of these approaches, three input setups (e.g. with and without the school period grades) and
four DM algorithms (e.g. Decision Trees, Random Forest, Support Vector Machine and 10-Fold Cross
Validation) were tested. In addition, an explanatory analysis was performed over the best models in
order to identify the most relevant features.

• Specifically, the input configurations consisted of the following three scenarios:

1) A - with all variables from dataset except G3 (the output);
2) B - similar to A but without G2 (the second period grade); and
3) C - similar to B but without G1 (the first period grade).

Methods

• As can be concluded from the above mentioned procedures, this project was divided into two general
forms of analysis, which are classification and regression analysis. In both cases, these analyses are
implemented when dealing with supervised learning scenarios, which consist of exposing your established
model to a set of labeled training examples from your dataset in order for it to ultimately correctly
determine the class labels for unseen instances (testing set).

• With regards to classification models, I examined their performance based on their associated Percentage
of Correct Classifications (PCC), while in regression the Root Mean Squared Error (RMSE - variance
of the residuals (errors) - indicator of how close the observed data points are to the model’s predicted

2

values) is a popular metric. A high PCC (i.e. near 100%) suggests a good classifier, while a regressor
should present a low global error (i.e. RMSE close to zero).

10-Fold Cross Validation

• In the case of the 10-fold cross validation, we are randomly partitioning the data into k parts or “folds”,
set one fold aside for testing, train a model on the remaining k-1 folds and evaluate it on the test fold.
This process is repreated k times until each fold has been used for testing once.

• For this work, 20 runs of a 10-fold cross-validation were applied to each configuration. Under such
scheme, for a given run the data is randomly divided in 10 subsets of equal size. Sequentially, one
different subset is tested (with 10% of the data) and the remaining data used to fit the DM technique.
At the end of this process, the evaluated test set contains the whole dataset, although 10 variations of
the same DM model are used to create the predictions.

• In comparison to the other DM algorithms with regards to classification, this algorithm’s performance
in general was better if pruning is not executed with the Decision Tree and Random Forest models.
Below are the results of the 10-fold Cross Validation for all possible classification cases.

A-Setup

• 10-fold Cross Validation (Binary)
read the caret library.
library(caret)

Loading required package: lattice

Loading required package: ggplot2
load the data:
MAT <- read.table("student-mat.csv",sep=";",header=TRUE)
attach(MAT)
Binary response
Score <- factor(ifelse(G3 >= 10, 1, 0),

labels = c("fail", "pass"))
MAT <- data.frame(MAT, Score)

define training control
set.seed(1337)
train_control<- trainControl(method="cv", number=10, repeats=20, savePredictions = TRUE)
train the model
model<- train(Score ~. - G3, data=MAT, trControl=train_control, method="rpart")

Loading required package: rpart
Find PCC (Percent Correct Classification)
print(model)

CART
##
395 samples
33 predictor
2 classes: 'fail', 'pass'
##
No pre-processing
Resampling: Cross-Validated (10 fold)

3

Summary of sample sizes: 356, 355, 356, 356, 355, 355, ...
Resampling results across tuning parameters:
##
cp Accuracy Kappa
0.00000000 0.8937821 0.7518868
0.01282051 0.9111538 0.8009587
0.75384615 0.7349359 0.2222032
##
Accuracy was used to select the optimal model using the largest value.
The final value used for the model was cp = 0.01282051.
Most important variables
varImp(model)

rpart variable importance
##
only 20 most important variables shown (out of 41)
##
Overall
G2 100.000
G1 64.455
failures 15.641
goout 5.561
age 3.825
health 0.000
famrel 0.000
freetime 0.000
Fjobother 0.000
paidyes 0.000
romanticyes 0.000
nurseryyes 0.000
addressU 0.000
sexM 0.000
Fjobservices 0.000
higheryes 0.000
Fedu 0.000
schoolsupyes 0.000
guardianother 0.000
internetyes 0.000

• 10-fold Cross Validation (5-level classification)
rm(list = ls())

load the data:
MAT <- read.table("student-mat.csv",sep=";",header=TRUE)
5-level response
Score <- ifelse(G3 >= 0 & G3 <= 9, "fail", ifelse(G3 >= 10 & G3 <= 11, "sufficient", ifelse(G3 >= 12 & G3 <= 13, "satisfactory", ifelse(G3 >= 14 & G3 <= 15, "good", "excellent/very good"))))
MAT <- data.frame(MAT, Score)

Find PCC (Percent Correct Classification)
print(model)

CART
##
395 samples

4

33 predictor
5 classes: 'excellent/very good', 'fail', 'good', 'satisfactory', 'sufficient'
##
No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 355, 356, 356, 355, 356, 356, ...
Resampling results across tuning parameters:
##
cp Accuracy Kappa
0.1018868 0.6834615 0.58004043
0.2150943 0.5341667 0.35180059
0.2679245 0.3818590 0.09725188
##
Accuracy was used to select the optimal model using the largest value.
The final value used for the model was cp = 0.1018868.
Most important variables
varImp(model)

rpart variable importance
##
only 20 most important variables shown (out of 41)
##
Overall
G2 100.000
G1 69.608
failures 10.419
Medu 6.195
goout 3.543
Dalc 2.641
schoolsupyes 2.401
freetime 0.000
Walc 0.000
Fjobother 0.000
activitiesyes 0.000
famrel 0.000
higheryes 0.000
age 0.000
sexM 0.000
Fjobservices 0.000
internetyes 0.000
Fedu 0.000
famsupyes 0.000
guardianother 0.000

B-Setup

• 10-fold Cross Validation (Binary)
define training control
set.seed(1337)
train_control<- trainControl(method="cv", number=10, repeats=20, savePredictions = TRUE)
train the model
model<- train(Score ~. - G2 - G3, data=MAT, trControl=train_control, method="rpart")

5

Find PCC (Percent Correct Classification)
print(model)

CART
##
395 samples
33 predictor
2 classes: 'fail', 'pass'
##
No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 356, 355, 356, 356, 355, 355, ...
Resampling results across tuning parameters:
##
cp Accuracy Kappa
0.03846154 0.8304487 0.6104561
0.06153846 0.8152564 0.6228311
0.43846154 0.7187821 0.2741535
##
Accuracy was used to select the optimal model using the largest value.
The final value used for the model was cp = 0.03846154.
Most important variables
varImp(model)

rpart variable importance
##
only 20 most important variables shown (out of 40)
##
Overall
G1 100.000
failures 31.491
age 17.604
absences 10.049
guardianother 7.549
goout 7.296
higheryes 4.789
romanticyes 2.713
Walc 0.000
health 0.000
Fjobother 0.000
activitiesyes 0.000
Dalc 0.000
internetyes 0.000
addressU 0.000
sexM 0.000
Fjobservices 0.000
famrel 0.000
Fedu 0.000
famsupyes 0.000

• 10-fold Cross Validation (5-level classification)
Find PCC (Percent Correct Classification)
print(model)

6

CART
##
395 samples
33 predictor
5 classes: 'excellent/very good', 'fail', 'good', 'satisfactory', 'sufficient'
##
No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 355, 356, 356, 355, 356, 356, ...
Resampling results across tuning parameters:
##
cp Accuracy Kappa
0.07924528 0.5064103 0.3423619
0.08301887 0.4835897 0.3159242
0.20377358 0.4028846 0.1684877
##
Accuracy was used to select the optimal model using the largest value.
The final value used for the model was cp = 0.07924528.
Most important variables
varImp(model)

rpart variable importance
##
only 20 most important variables shown (out of 40)
##
Overall
G1 100.000
failures 20.564
absences 10.110
Medu 9.933
goout 5.620
Dalc 3.312
famrel 0.000
freetime 0.000
Fjobother 0.000
paidyes 0.000
romanticyes 0.000
nurseryyes 0.000
age 0.000
sexM 0.000
Fjobservices 0.000
higheryes 0.000
Fedu 0.000
schoolsupyes 0.000
guardianother 0.000
internetyes 0.000

C-Setup

• 10-fold Cross Validation (Binary)
define training control
set.seed(1337)
train_control<- trainControl(method="cv", number=10, repeats=20, savePredictions = TRUE)

7

train the model
model<- train(Score ~. - G1 - G2 - G3, data=MAT, trControl=train_control, method="rpart")

Find PCC (Percent Correct Classification)
print(model)

CART
##
395 samples
33 predictor
2 classes: 'fail', 'pass'
##
No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 356, 355, 356, 356, 355, 355, ...
Resampling results across tuning parameters:
##
cp Accuracy Kappa
0.02115385 0.6857692 0.1928890
0.03076923 0.7085897 0.2469571
0.16153846 0.6809615 0.1107344
##
Accuracy was used to select the optimal model using the largest value.
The final value used for the model was cp = 0.03076923.
Most important variables
varImp(model)

rpart variable importance
##
only 20 most important variables shown (out of 39)
##
Overall
failures 100.00
goout 35.55
age 24.46
higheryes 23.34
absences 21.61
freetime 0.00
Dalc 0.00
Fjobother 0.00
paidyes 0.00
famrel 0.00
nurseryyes 0.00
addressU 0.00
sexM 0.00
Fjobservices 0.00
internetyes 0.00
Fedu 0.00
schoolsupyes 0.00
guardianother 0.00
romanticyes 0.00
Mjobhealth 0.00

• 10-fold Cross Validation (5-level classification)

8

Find PCC (Percent Correct Classification)
print(model)

CART
##
395 samples
33 predictor
5 classes: 'excellent/very good', 'fail', 'good', 'satisfactory', 'sufficient'
##
No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 355, 356, 356, 355, 356, 356, ...
Resampling results across tuning parameters:
##
cp Accuracy Kappa
0.01886792 0.3617949 0.11912768
0.03144654 0.3441026 0.08354359
0.03396226 0.3188462 0.02255030
##
Accuracy was used to select the optimal model using the largest value.
The final value used for the model was cp = 0.01886792.
Most important variables
varImp(model)

rpart variable importance
##
only 20 most important variables shown (out of 39)
##
Overall
absences 100.00
failures 86.49
Medu 80.24
Walc 59.69
Dalc 51.11
guardianother 41.86
goout 29.41
schoolsupyes 24.03
higheryes 22.19
Fjobother 0.00
nurseryyes 0.00
health 0.00
romanticyes 0.00
age 0.00
sexM 0.00
Fjobservices 0.00
famrel 0.00
Fedu 0.00
paidyes 0.00
traveltime 0.00

9

Random Forest

• Now, in terms of regression analysis, the best scenario would be to implement a random forest algorithm
based on its overall performance with respect said analysis and compared to the results of the other
algorithms.

• With random forest, we are essentially building various decision trees, but when building these decision
trees, each time a split in a tree is considered, a random sample of m predictors is chosen as split
candidates from the full set of p predictors. With these bushy trees, the random forest algorithm later
takes their average in order to reduce the variance.

A-Setup

• Regression (Random Forest)
rm(list = ls())
MAT <- read.table("student-mat.csv",sep=";",header=TRUE)

Train and test sets
set.seed(1337)
ind <- sample(2, nrow(MAT), replace = TRUE, prob = c(0.8, 0.2))
train <- MAT[ind==1,]
test <- MAT[ind==2,]

Create random forest: G3 as a function of all variables
library(randomForest)

randomForest 4.6-12

Type rfNews() to see new features/changes/bug fixes.

##
Attaching package: 'randomForest'

The following object is masked from 'package:ggplot2':
##
margin
rf.MAT = randomForest(G3 ~ ., data = train)
rf.MAT

##
Call:
randomForest(formula = G3 ~ ., data = train)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 10
##
Mean of squared residuals: 3.283751
% Var explained: 85.17
Out-of-bag error vectors
oob.err = double(32)
Test error vector
test.err = double(32)
Run every value of mtry
for (mtry in 1:32) {
fit a random forest in the training data with 400 trees

10

fit = randomForest(G3 ~ ., data = train, mtry = mtry, ntree = 400)
Record OOB error
oob.err[mtry] = fit$mse[400]
Calculate predictions
pred = predict(fit, test)
Record test error
test.err[mtry] = with(test, mean((G3 - pred)^2))
Display the value of mtry
cat(mtry, " ")
}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Create plot using function matplot (since we have two
vectors: test.error and oob.error) type = 'b' plots both
points
matplot(1:mtry, cbind(test.err, oob.err), pch = 19, col = c("red",
"blue"), type = "b", ylab = "Mean Squared Error")
Legend in the top-right corner
legend("topright", legend = c("OOB", "Test"), pch = 19, col = c("blue",
"red"))

0 5 10 15 20 25 30

2
4

6
8

10
12

14

1:mtry

M
ea

n
S

qu
ar

ed
 E

rr
or

OOB
Test

Find MSE
which.min(oob.err)

[1] 20

11

sqrt(oob.err[20])

[1] 1.610602
which.min(test.err)

[1] 19
sqrt(test.err[19])

[1] 1.556641
Extract tree structure of randomForest object with least oob.err
tree <- getTree(fit, k=20, labelVar = TRUE)
Output the variables used in such object
unique(na.omit(tree$`split var`))

[1] G2 absences reason Mjob age failures
[7] schoolsup freetime goout Fedu activities famrel
[13] famsize paid Walc studytime G1 guardian
[19] Fjob traveltime
20 Levels: absences activities age failures famrel famsize Fedu ... Walc

B-Setup

• Regression (Random Forest)
Create random forest: G3 as a function of all variables except G2
rf.MAT = randomForest(G3 ~ . - G2, data = train)
rf.MAT

##
Call:
randomForest(formula = G3 ~ . - G2, data = train)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 10
##
Mean of squared residuals: 6.101527
% Var explained: 72.44

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

12

0 5 10 15 20 25 30

4
6

8
10

12
14

16

1:mtry

M
ea

n
S

qu
ar

ed
 E

rr
or

OOB
Test

Find MSE
which.min(oob.err)

[1] 24
sqrt(oob.err[20])

[1] 2.326636
which.min(test.err)

[1] 26
sqrt(test.err[31])

[1] 2.121357
Extract tree structure of randomForest object with least oob.err
tree <- getTree(fit, k=20, labelVar = TRUE)
Output the variables used in such object
unique(na.omit(tree$`split var`))

[1] G1 absences failures schoolsup activities reason
[7] famrel Mjob Medu age goout Fedu
[13] guardian famsize sex freetime paid famsup
[19] Fjob address health traveltime Walc Dalc
[25] nursery studytime school
27 Levels: absences activities address age Dalc failures ... Walc

13

C-Setup

• Regression (Random Forest)
Create random forest: G3 as a function of all variables except G1 and G2
rf.MAT = randomForest(G3 ~ . - G1 - G2, data = train)
rf.MAT

##
Call:
randomForest(formula = G3 ~ . - G1 - G2, data = train)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 10
##
Mean of squared residuals: 16.34387
% Var explained: 26.18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0 5 10 15 20 25 30

12
14

16
18

20

1:mtry

M
ea

n
S

qu
ar

ed
 E

rr
or

OOB
Test

Find MSE
which.min(oob.err)

[1] 27
sqrt(oob.err[20])

[1] 4.022133

14

which.min(test.err)

[1] 7
sqrt(test.err[5])

[1] 3.513371
Extract tree structure of randomForest object with least oob.err
tree <- getTree(fit, k=20, labelVar = TRUE)
Output the variables used in such object
unique(na.omit(tree$`split var`))

[1] failures higher absences Medu Dalc Mjob
[7] schoolsup guardian Fjob goout studytime famrel
[13] freetime romantic reason age famsup Fedu
[19] address school famsize health Walc paid
[25] traveltime Pstatus
26 Levels: absences address age Dalc failures famrel famsize ... Walc

Conclusion and Future Work

• As can be witnessed and confirmed from the results, we can be more reliant on achieving overall best
results from utilizing 20 runs of a 10-fold cross validation model for classification and randomForest for
the case of regression.

• For reference, I will include an “Appendix” section where the viewer may find the implementation of
the previously mentioned DM algorithms so as to compare the results of those algorithms with the ones
described above.

• As an extra note, for future work, I may execute this same investigation actually for the upcoming
Spring semester with regards to STU student data and see the results of these algorithms with this
dataset so as to maybe pinpoint areas where STU’s approach towards its students may improve.

References

Cortez, P., & Silva, A. (n.d.). Using Data Mining To Predict Secondary School Student Performance.
Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.540.8151&rep=rep1&type=pdf

James, G. (2013). An introduction to statistical learning: With applications in R.

15

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.540.8151&rep=rep1&type=pdf

	Introduction and Motivation
	Data Description
	Methods
	10-Fold Cross Validation
	A-Setup
	B-Setup
	C-Setup

	Random Forest
	A-Setup
	B-Setup
	C-Setup

	Conclusion and Future Work
	References

