Braess Paradox in Electrical Networks - When more might mean less

Abstract

2. Objectives

Learn how to map electrical grids into mathematical networks and characterize them for structural and functional optimizazion. Learn abut Braess Paradod a and networks with Wheatstone Bridge configurations. Developing an alaoorithm for defecting embedded Wheatstone subutetworks.
Obserese how extra Obsene how extra
across the network

4. Numerical \& Graphical Solutions

Wheastone Bridge

Demonstration of Braess Paradox

 resistances. present. These
others are indicated with a

Fig 13 : Upon creating the 13 - bus system with hte added
edges tot the reacuced newwork, we can see that based on

Fig 14: Too demonstrate how adding more edges to the
neiwork, would increase the amount of congestion. We
 the more edges you ada to te network, the more
unbalaned the sysem becomes. Even fyou incoase the
amount of tusss, the more complex the nework, the more

5. Conclusion

Braess Paradox, a concept originally involved with traftic networks and its counterintuitive approach of adding an
addititonal road to alleviate congestion can be extended to it is implications with electrical grids. -aditional road to Ileveviat congestion, can be extended to its isplications with leectrical grids.

6. Acknowledgements

 projects topic was crucial in our satisfactory completion of this project. In addition, we greatly appreciate being assignead a profiect

7. References

