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Abstract
Electrical grids are part of the network of connections maintaining a city alive nowadays. Many times we see a limited

amount of lines and poles, as well as, supportive local electrical transformer points (LETP). Most of these connections are

wired in parallel in order to guarantee a sustainable flow of electricity plus being robust enough against failures. Why are

we not making the system redundant and increasing the number of grid points and cabling? Despite of the economic cost

of such approach there is a counter intuitive fact known as the Braess Paradox, stating that the addition of some extra

lines will be detrimental to the performance level of the network or the grid. This fact is extremely important when you are

designing Smart Grids and Cities. In this presentation, as part of a term project for MAD 3300 Graph Theory and Networks

the Braess Paradox is investigated for several network configurations. Special interest is dedicated to the Wheatstone

bridge and to those networks containing such configurations as part of their structural elements. The flow across the

network as well as the overall resistance are computed and expressed in terms of network characteristics.

1. Motivations and General Ideas

2. Objectives
• Learn how to map electrical grids into mathematical networks and characterize them for structural and functional optimization.

• Learn about Braess Paradox and networks with Wheatstone Bridge configurations.

• Observe the presence of Braess Paradox in Wheatstone networks due to unmeet conditions.

• Developing an algorithm for detecting embedded Wheatstone subnetworks.

• Observe how extra Wheatstone connections in the network makes the system unbalanced, thus causing congestion in the flow

across the network

What is Braess Paradox?

Braess paradox states that in a congested network, it

may happen that adding a new path between

destinations can increase the level of congestion. In

transportation networks, the phenomenon results from

the decisions of network participants who selfishly seek

to optimize their own performance metrics. In an electric

power distribution network, an analogous increase in

congestion can arise as a consequence of Kirchhoff's

laws.

What is Wheatstone Bridge?

Fig 3: The Wheatstone bridge is an

electrical bridge circuit used to measure

resistance.

• This bridge consists of a galvanometer and two parallel branches containing four

resistors. One parallel branch contains one fixed resistance R3 and one unknown

R4; the other parallel branch contains an adjustable resistance R2 and finally

another fixed resistance R1.

• Due to this specific arrangement of resistors, we observe that the resistance of both

arms of the bridge circuit is the same. Thus, by applying Kirchhoff's laws, we obtain

the equation which shows the relationship of the resistance between the two arms of

the bridge:

3. Model Implementation 4. Numerical & Graphical Solutions

5. Conclusion
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Step 5. Define 𝑅1,  𝑅2, 𝑅3

𝑵 𝑵𝟐 𝑵𝟑

{{1, 3}, {1, 4}, {2, 7}, {3, 5}, 

{3, 7}, {4, 6}, {4, 8}, {5, 7}, 

{7, 9}, {7, 10}, {8, 10}}

(𝒂)

{{1, 4}, {3, 5}, {7, 9}, 

{8, 10}}

(𝒃) (𝒄)

{{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 7}, {2, 3}, 
{2, 4}, {2, 5}, {2,7}, {3, 4}, {3, 5}, {4, 5}, 
{4, 7}, {4, 9}, {6, 7}, {6, 8}, {6, 9}, {6, 10}, 
{7, 8}, {7, 9}, {7, 10}, {8, 9}, {8, 10}, {9, 
10}}

Wheatstone Bridge 1

Wheatstone bridge 2

Wheatstone bridge 3

Wheatstone bridge 4
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• Braess Paradox, a concept originally involved with traffic networks and its counterintuitive approach of adding an

additional road to alleviate congestion, can be extended to its implications with electrical grids.

• Specifically, the consequences of erroneously increasing the number of grid points and cablings for better

transmission of electrical power in a network may actually decrease the networks level of performance and lead to

detrimental loses in electrical power flow and ultimately cause power outages across the grid.

Fig 2: Schematic representation of the Braess Paradox when four

vertices are considered and an extra edge is added to the grid.

Fig 1: Schematic representation of the USA backbone electrical grid (a). As it

might be notice, the grid can be mapped into a graph or network (b), where the

hubs are vertices and power lines are edges. The idea is to optimize the topology

of the network and make it a smart grid (c).

(a)

(b)

(c)

(a) (b) 

(a.) (b.) 

(a.) (b.) 

Foundations of Graph Theory

Demonstration of Braess Paradox
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Mathematica is a symbolic mathematical computation al program, sometimes

called a computer algebra program, used in many scientific, engineering,

mathematical, and computing fields.

Applied Graph Theory / Wheatstone Detection Algorithm

Fig 7: (a) Shows the construction of matrix T. The diagonal of

the matrix demonstrates the number of triangles connected to

each bus. (b) Graphical representation of matrix T. Buses 1-10

have loops, which we will use to represent the number of
triangles connected to each bus

Fig 8 : (a.) Matrix Ñ1’s entries will tell us which pairs of nodes

have geodesic paths of length equal to one. This matrix will be

used for solving the indicator matrix. (b.) Graph showing the

geodesic paths of length 1.

Step 4. The Pairs of nodes in the network with a geodesic path of 

length one correspond to the off - diagonal nonzero entries of NG2 

Step 1. Calculate the node-node adjacency matrices 𝑁,

𝑁2, and 𝑁3 for the reduced-form 13-bus network.

Step 2. Construct the diagonal entries of the T Matrix. To 

obtain the triangles, you must divide the diagonal entries by 
1

2
. 

Step 3. Construct  a matrix Ñ1 from  Matrix N and a 10x10 

matrix of ones ,Matrix 1. Ñ1 = 1- N

Fig 9: (a) Matrix NG2 demonstrates 1 or 2 geodesic paths of

length one within the network. Since the matrix is symmetric, we

will only be looking at the upper triangular part of the matrix. (b.)

NG2 graph will be used to demonstrate sets R1 and R2.

(a) (b) 

Fig 11 : (a) is a simulation which was created using

Mathematica too balance the bridge out. We created a function

too see whether it is balanced or not. (b) is a graphical

demonstrating a Wheatstone bridge.

Fig 10: (a) Defines R1 as the set of all pairs of nodes that have

one or two geodesic paths of length equal to one. (b) Defines

R2 as the set of all pairs of nodes that have exactly two

geodesic paths of length equal to one. Defines R3 as the set of

all pairs of nodes that are separated by at least two paths of

length 1.

• Define WS = T ∩ D ∩ R2 ∩ R3 . Some care is required in defining the intersection of these sets, since T and D

contain a list of nodes, whereas R2 and R3 contain a list of pairs of nodes. If Ω is a set of single elements, and Ψ is

a set of pairs of elements, then we will say that {ψ𝑖,ψ𝑗} ∈ Ω ∩ Ψ if and only if ψ𝑖 ∈ Ω and ψ𝑗 ∈ Ω, for all ψ𝑖, ψ𝑗 ∈ Ψ

• Calculate the clustering coefficient for all the sub-graphs. Those for which K = 5/6 represent Wheatstone sub-

networks.

• For all pairs of nodes {(i,j)} in WS, construct the node-node adjacency matrix for the sub-graph consisting of i, j, and

all nodes that are neighbors of both i and j (that is, those nodes which have a geodesic path distance of one from

both i and j). Ignore any direct links between i and j. We take the union of the T matrix, degrees of the nodes, R2

and R3. By organizing the data into a series of 4 tables, we were able to conclude upon analyzing the reduced

network graph that each table gives us each of the Wheatstone configurations present.

Fig 12: The reduced network graph where the highlighted

lines represent the shortest and convenient path from one

node to any other that traverses the least amount of

resistances present . These are labeled with “+” while all

others are indicated with a “-”.

Fig 13: Upon creating the 13 - bus system with the added

edges to the reduced network, we can see that based on

the distribution of "+" & "-" lines in both network, the

reduced network is balanced, but the 13 - bus network is

unbalanced. Now, by comparing the values of the total

resistance traversed between both networks, we see that

the reduced network' s path was more efficient in avoiding

the larger resistances.

Fig 14: Too demonstrate how adding more edges to the

network, would increase the amount of congestion. We

created a 13-bus network with 31 connections. Actually,

the more edges you add to the network, the more

unbalanced the system becomes. Even if you increase the

amount of buses, the more complex the network, the more

unbalanced it will become.
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Fig 4 : (a) In Graph Theory, a Graph is defined as the

collection of vertices or points that are connected by edges

or lines, (b) By looking at the configuration of a graph, we

can determine the number of edges connected to its

vertices or known formally as the degree of its vertices.

Fig 5 : The idea of connections can be extended to the

concept of adjacency, where two vertices are joined by an

edge, and consequently, we say that these two vertices are

incident with that edge that bonds both together or vice versa.

Fig 6 : (a) Particularly, we can represent any graph based

on the previous information with either its corresponding

adjacency or incidence matrix. If n represents the number

of vertices and m represents the number of edges, the

adjacency matrix will have dimensions of nxn in which the

entry in row i and column j is the number of edges joining

the vertices i and j. On the other hand, the incidence matrix

is the nxm matrix in which the entry in row i and column j is

1 if vertex i is incident with edge j, and 0 otherwise.
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